- 1. <u>PROBLEM</u>: It is desired to heat up 10,000 pounds of sugar to 160°F. Assume initial temperature to be 60°F and heat losses to be 25%.
 - **A.** How much heat is required for this job if a one hour heat up time is used?
 - B. How much heat is required for this job if a twenty minute heat up time is used?

SOLUTION A.:	Q	= = =	W x S.H. x T.R. (Determine S.H. from G.E. Table 2) 10,000 x .30 x 100 300,000 B.T.U.
	Total Q	= =	300,000 + 75,000 375,000 B.T.U.
SOLUTION B.:	Q	= = =	W x S.H. x T.R. 10,000 x .30 x 100 x 3 900,000 B.T.U.
	Total Q	=	900,000 + 225,000 1,125,000 B.T.U.

- 2. PROBLEM: What is the total heat of steam at 100 P.S.I. and what volume does it occupy?
 - SOLUTION: 1. From G.E. Table 3, Read for 100 P.S.I.
 2. Total Heat Content = 1189.7 B.T.U./Pound.
 3. It occupies 3.882 Cu. Ft./Lb.
- **3. PROBLEM:** Assume a Unit operates at 100 P.S.I. and requires 10 H.P.; what size steam and return line should be run if it is located 100 Ft. from the boiler?
 - **<u>SOLUTION</u>: 1.** Determine the Pounds of Steam required.
 - $10 \times 34.5 = 345$ Pounds of Steam per Hour.
 - Select Steam Line Size from 100 P.S.I. Table 5.
 Note: For High Pressure Piping, use 2 P.S.I. Drop/100 Ft. Read 440 Pounds from Table, therefore 1-1/4" Line required.
 - Select Return Line Size Read 419 Pounds from Table; under 100 PSI High Pressure Return Column. Therefore, 3/4" Line required.
- 4. <u>PROBLEM</u>: If 1/8 P.S.I. Gas Pressure is available at the inlet to a 20 H.P. Boiler, would this be sufficient pressure?
 - **SOLUTION: 1.** From Specifications, we know 7 to 14" W.C. is required.
 - 2. To convert P.S.I. to Inches W.C., refer to G.E. Table 1.
 - 3. P.S.I. x 27.684 = Inches Water Column.
 - 1/8 x 27.684 = 3.46 Inches Water Column.
 - **4.** Pressure is not sufficient.

G.E. 6 8D

5. <u>PROBLEM</u>: What Size Gas Line should be run for a 9.5 H.P. Boiler if line is 75 Feet long with 5 ells?

SOLUTION: 1. From Spec 398 BTU or CFH is required at rating.

- 2. Use G.E. Table 6, Table No. 22-D, Low Pressure Table with .5" W.C. Drop.
- **3.** Number of Elbows is not a factor in new Tables, in regards to length.
- **4.** Refer to the closest column larger than actual length, in this case refer to the 80 ft. column.
- 5. For 80 Feet Pipe, a 1" Gas Line will handle only 222 CFH.
- Therefore, a 1-1/4" Line would be required; it could handle up to 456 CFH.
- **6.** For Multiple Outlet Systems, refer to U.P.C.
- 6. <u>PROBLEM</u>: How Many 3/32" Orifices should be used to exhaust 9.5 H.P. into a Steam Room if pressure in steam line is 10 P.S.I.?

SOLUTION: 1. From G.E. Table 7, for 10 P.S.I. and 3/32" Orifice Read .3 H.P./Orifice. **2.** Therefore - <u>9.5 H.P.</u> = 31.6 = 32 Orifices 3 H.P./Orifice.

 PROBLEM: Determine the area of Combustion Openings required for a 50 H.P. Boiler. The Boiler Room is 30 x 20 x 12' High and adjacent to an outside wall on Ground Level. The Owner would like to use Metal Louvers. Describe where the Openings should be.

SOLUTION: Refer to General and Basic Installation Instructions V, Air Supply.

1. In order for the Room to be judged unconfined, it must have a volume of 50 Cubic Feet per 1 000 BTUH Input or larger

L	SU Cubic reel per	1,000 BIOH Input of larg
	Required Volume	=2,100,000/1000 x 50
		=105,000 Cubic Ft.
	Actual Volume	=30 x 20 x 12
		=7.200 Cubic Ft.

Room is confined.

- 2. Two Openings required.
- **3.** The Combined Opening Area should be 1/2 Sq. In. per 1,000 BTUH Input. 2,100,000/1000 x .5 = 1,050 Sq. In.
- Account for Louvers with 60% Free Area. 1,050 Sq. In./.6 = 1,750 Sq. In. Total Wall Opening Size = 1,750 Sq. In.
- **5.** One Half of this or 875 Sq. In. shall be within 12" of the Ceiling and one-half of this (875 Sq. In.) should be within 12" of the Floor.

GENERAL-ENGINEERING.DOC