CLEAN STEAM DESIGN GUIDELINES

Clean Steam is a general term used to describe a range of steam pureness. It may be generated by such methods as:

- Filtration of plant steam typically requiring the removal of particles larger than 5 microns
- An independent steam generator, e.g. Stainless steel reboiler fed with distilled water.
- One stage of a multi-effect still within the overall water purification system.

Uses for Clean Steam vary by industry, however typical applications include:

- In-line sterilization of storage tanks and equipment
- Powering sterilizers and autoclaves
- Cleaning and sterilizing process piping systems without disassembling the piping system - commonly known as CIP (Clean in Place)
- Pasteurization utilizing Ultra High Temperature Processing (UHT)

The highest quality clean steam however, is typically used by the Pharmaceutical and Biotechnical industries. This steam, occasionally referred to as "Pure Steam", is most often supplied by an independent steam generator utilizing Water for Injection (WFI) as feed water. WFI is typically produced by a Reverse Osmosis (RO) generator and then distilled thus removing any traces of organics, bacteria, and pyrogens. Pure steam is required for the sterilization of cell culture processing equipment such as incubators where contaminants could adversely affect cell growth. Other uses include pharmaceutical manufacture and direct steam injection pasteurization where contaminants could collect in products intended for human consumption.

Clean steam produced from high purity make up water is highly corrosive due to the minimal ion content. High purity water, pure steam and the resultant condensate will aggressively attempt to absorb or leach ions from their environment to achieve a more natural balance. Additionally, chemicals used to passivate steam and condensate in conventional systems are generally prohibited from clean steam systems as such chemicals could contaminate or alter sensitive end products. Should corrosion begin, the oxidation byproducts may travel through the steam system catalyzing corrosion throughout in a process known as ‘rouging’.

To combat the corrosive nature of clean steam, design practices require piping, fittings and valving to be comprised of corrosion resistant materials. Current industry accepted materials include 304L, 316 and 316L stainless steel and higher alloys such as Inconel. While these materials have proven themselves in practice, it should be noted that there are currently no U.S. governmental standards specifying materials for clean steam service. Regulatory agencies concern themselves with the purity and quality of the product, leaving the design standards entirely up to the manufacturer.

In addition to the use of corrosion resistant materials in sanitary systems, features designed to inhibit bacterial growth are often required. Piping, valves and fittings should be free draining and maintain industry standard surface finishes. Free draining valves and fittings are designed not to retain or ‘Puddle’ condensate when installed correctly. After shut down of the steam system, any puddled condensate could potentially promote bacterial growth. Inadequate surface finishes reduce the effectiveness of system sterilization techniques, increasing the possibility of bacterial contamination. Industry standard surface finishes are measured in micro inches, the lower the number the smoother, and are expressed as an arithmetic average (Ra). Typical industry specified surface finishes range from 32 to 10 µ in. Ra.

PIPING & TRAPPING DESIGN GUIDELINES

1. Extra care should be taken for expansion stresses due to the higher coefficient of expansion for stainless steel.
2. Branch connections are to be made from the top of headers with the block valve as close as possible to the header.
3. The recommended types of branch connections are tees and reducing tees.
4. Steam lines should slope down to traps (recommended 1% min.).
5. A dirt leg with trap station is recommended at every change of elevation (no undrainable pockets).
6. Extra care should be taken in pipe supports to eliminate sagging.
7. Instruments in general should be kept to a minimum. However, where required, it is recommended that:
 A) All are installed in tees.
 B) Pressure gauges be installed with diaphragm seals.
 C) Flow meters be installed in the vertical flow-up position to eliminate pockets
 D) Pressure reducing stations be kept to a minimum.
8. Traps should be installed in the vertical flow-down position to eliminate pockets.
9. Trap block valves should be located as close as possible to the user.
10. Condensate lines should be sloped (recommended 1% min.) to the end point. Note that contaminated condensate should always be piped to a process sewer. Uncontaminated condensate (from drip legs) may be recovered, if cost effective, and used elsewhere in the plant (not as Clean Steam make-up).
11. Condensate terminal points should contain an air break (2” or 2 pipe diameters, whichever is greater) between the end of the pipe and the drain, floor or grade.
12. Test connections for traps are recommended-trap efficiency is essential for Clean Steam.